在图像美学评估领域,实验室已构建了入门学习资料库和路径,能帮助新同学快速上手;另外,我们提供数据集采集,标注和发布等流程的系列规范,立项了国际标准,并发布了全球首个以主题为核心的开源美学数据集;同时,我们还发布了第一个在通用、个性化和主题美学数据集上全SOTA的代码库;最后,我们还提供了图像美学评估的落地应用案例,能有效的支撑个人或厂商对于图像评估的需求。
开源项目地址: https://github.com/woshidandan/TANet
相关论文:
[1] Shuai He, Yongchang Zhang, Dongxiang Jiang, Rui Xie, Anlong Ming*, Rethinking Image Aesthetics Assessment: Models, Datasets and Benchmarks,the 31st International Joint Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence (IJCAI-ECAI), 2022.